
Acknowledgments

The HTAN (U24-CA233243) and INCLUDE (U2C-HL156291)

NIH programs fund this work and associated travel.

References and Links

This poster has a FigShare DOI, which includes references

and links. Access it using the QR code beside the poster title.

Motivation

Launching workflows often involves multiple steps, such as:

1. Preparing workflow parameters from other (meta)data

2. Transferring input data files and workflow output files

3. Chaining multiple community-curated workflows

Including these additional tasks in the workflows would limit

their portability and usefulness for the community.

Hence, there is a need for tooling that can orchestrate these
high-level extract-transform-load (ETL) pipelines.

Current Challenges

● Selecting a workflow management system: This process

proved to be more challenging than anticipated. While

most options meet our requirements on paper, they each

have limitations that are not obvious at first glance.

● Avoiding duplicate workflow runs: Given that HTTP

POST requests are not idempotent, special care is

needed when submitting runs to avoid unnecessary

costs. For example, the client can query existing runs

before submission. Additionally, APIs need to support

any caching offered by the backend execution engines.

● Supporting custom logic for preparing API requests:
While it's possible to standardize workflow execution

APIs, the client must allow users to specify how to

generate the workflow inputs since organizations and

projects organize their metadata in distinct ways.

Example ETL #1: Low complexity
Fully containerized Python ETL pipeline

Proposed Solution

The proliferation of workflow execution platforms and APIs

has opened up the opportunity for remote orchestration.

We are developing the sagetasks Python package as a
collection of reusable functions for moving and processing
data on platforms such as Nextflow Tower and Cavatica.

These functions could be leveraged by general-purpose

workflow management systems, providing out-of-the-box

user interfaces, monitoring, scheduling, and logging.

Color Legend
● Extract step

● Transform step

● Load step

Example ETL #2: Medium complexity
Round trip from Synapse to Nextflow Tower

Example ETL #3: High complexity
Data processing and DRS ID minting on Cavatica

Workflow Management Systems – Feature Comparison

sagetasks: a Python package for data and
workflow orchestration in the cloud

Features (requirements in bold) Airflow Prefect Dagster Flyte

Scheduled pipelines Yes Yes Yes Yes

Manually triggered pipelines Yes Yes Yes Yes

Python support Yes Yes Yes Yes

Self-hosted option Yes Yes Yes Yes

Runtime parameters Yes Yes Yes Yes

Dynamic workflows Yes Yes Partly Yes

Secrets Yes Yes Yes Partly

Caching/memoization No Yes Yes Yes

Web user interface Yes Yes Yes Yes

Command-line interface Yes Yes Yes Yes

Nested pipelines Yes Yes Yes Yes

Container orchestration Yes No Yes Yes

AWS connectors Yes Partly Partly Partly

Static DAG visualization Yes No Yes Yes

Product maturity Yes Partly Partly Partly

Cross-pipeline triggers Yes Partly Yes Partly

Bruno M. Grande, Tess M. Thyer, James A. Eddy,

Thomas V. Yu, Brian D. O’Connor

Stage data from Synapse to S3

Submit workflow to
Nextflow Tower

Index workflow output files
from S3 to Synapse

Trigger: Automatic (per manifest)

Index data from S3 to Cavatica

Prepare workflow submission

Submit workflow to Cavatica

Collate workflow output files

Mint DRS ID for each output file

Trigger: Manual (per sample sheet)

Deploy containerized ETL pipeline
for the given data release

Trigger: Manual (per release)

We’re hiring!

https://airflow.apache.org/
https://www.prefect.io/
https://dagster.io/
https://flyte.org/
https://airflow.apache.org/docs/apache-airflow/stable/concepts/scheduler.html
https://docs.prefect.io/concepts/schedules/
https://docs.dagster.io/concepts/partitions-schedules-sensors/schedules
https://docs.flyte.org/projects/cookbook/en/latest/auto/core/scheduled_workflows/lp_schedules.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/params.html
https://docs.prefect.io/concepts/flows/#parameters
https://docs.dagster.io/concepts/configuration/config-schema
https://docs.flyte.org/projects/cookbook/en/latest/auto/core/flyte_basics/basic_workflow.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/dags.html#dynamic-dags
https://www.prefect.io/guide/blog/workflow-orchestration-without-dags/#Understandingdynamicflows
https://docs.dagster.io/concepts/ops-jobs-graphs/dynamic-graphs
https://docs.flyte.org/projects/cookbook/en/latest/auto/core/control_flow/dynamics.html
https://airflow.apache.org/docs/apache-airflow/stable/security/secrets/index.html
https://docs.prefect.io/api-ref/prefect/blocks/system/#prefect.blocks.system.Secret
https://docs.dagster.io/deployment/guides/aws#secrets-management-in-ecs
https://docs.flyte.org/projects/cookbook/en/latest/auto/core/containerization/use_secrets.html
https://docs.prefect.io/concepts/tasks/#caching
https://docs.dagster.io/guides/dagster/memoization
https://docs.flyte.org/projects/cookbook/en/latest/auto/core/flyte_basics/task_cache.html
https://airflow.apache.org/docs/apache-airflow/stable/ui.html
https://docs.prefect.io/ui/overview/
https://docs.dagster.io/concepts/dagit/dagit
https://docs.flyte.org/en/latest/concepts/flyte_console.html#ui
https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html
https://docs.prefect.io/api-ref/prefect/cli/dev/
https://docs.dagster.io/_apidocs/cli
https://docs.flyte.org/projects/flytectl/en/latest/
https://airflow.apache.org/docs/apache-airflow/stable/concepts/dags.html#subdags
https://docs.prefect.io/concepts/flows/#composing-flows
https://docs.dagster.io/concepts/ops-jobs-graphs/nesting-graphs
https://docs.flyte.org/projects/cookbook/en/latest/auto/core/control_flow/subworkflows.html
https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html
https://docs.dagster.io/_apidocs/libraries/dagster-k8s#ops
https://docs.flyte.org/projects/cookbook/en/latest/auto/core/containerization/raw_container.html#container-tasks
https://airflow.apache.org/docs/apache-airflow-providers/operators-and-hooks-ref/aws.html
https://prefecthq.github.io/prefect-aws/
https://docs.dagster.io/_apidocs/libraries/dagster-aws
https://docs.flyte.org/projects/cookbook/en/latest/integrations.html
https://airflow.apache.org/docs/apache-airflow/stable/ui.html#graph-view
https://www.prefect.io/blog/introducing-radar/
https://docs.dagster.io/concepts/dagit/dagit#job
https://docs.flyte.org/en/latest/concepts/flyte_console.html#id12
https://github.com/apache/airflow
https://github.com/PrefectHQ/prefect
https://github.com/dagster-io/dagster
https://github.com/flyteorg/flyte
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/trigger_dagrun/index.html#airflow.operators.trigger_dagrun.TriggerDagRunOperator
https://docs.prefect.io/api-ref/rest-api/#/Flow%20Runs/create_flow_run_flow_runs__post
https://docs.dagster.io/concepts/partitions-schedules-sensors/sensors
https://docs.flyte.org/projects/cookbook/en/latest/auto/remote_access/remote_launchplan.html

